Computational Systems Biology
Sauro Lab
University of Washington
Home  |   Downloads  |   News  |   Research  |   Papers  |   About Us  |   Contact Us  |   SBW Help   |   Jobs
     


What is SBW 
Research Impact 
Published Papers 
Lab Members 
Available Positions 
CSB Links 
Courses 
Student Projects 
 
 
 
Software Downloads:

1. SBW
2. JDesigner
3. Jarnac
4. WinSCAMP
5. Matlab Interface
6. Optimization
6. Bifurcation
 
maintained by Frank Bergmann
 
 
 
 

Signaling Network Analysis

Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation

Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation, Chickarmane V, Kholodenko BN, Sauro HM. J Theor Biol. 2006 May 23; doi:10.1016/j.jtbi.2006.05.013

Abstract

There have been a growing number of observations of oscillating protein levels (p53 and NFkB) in eukaryotic signalling pathways. This has resulted in a renewed interest in the mechanism by which such oscillations might occur. Recent computational work has shown that a multisite phosphorylation mechanism such as that found in the MAPK cascade can theoretically exhibit bistability. The bistable behavior was shown to arise from sequestration and saturation mechanisms for the enzymes that catalyse the multisite phosphorylation cycle. These effects generate the positive feedback necessary for bistability. In this paper we describe two kinds of oscillatory dynamics which can occur in a network by which, both use such bistable multisite phosphorylated cycles. In the first example, the fully phosphorylated form of the phosphorylated cycle represses the production of the kinase, which carries out the phosphorylation of the unphosphorylated states of the cycle. The dynamics of this system leads to a relaxation oscillator. In the second example, we consider a cascade of two cycles, in which the fully phosphorylated form of the kinase, in the first cycle, phosphorylates the unphosphorylated forms in the second cycle. A feedback loop, by which the fully phosphorylated form of the second cycle inhibits the kinase step in the first cycle is also present. In this case we obtain a ring oscillator. Both these networks illustrate the versatility of the multisite bistable network.

Full Paper

Supplementary material

Transcriptional Dynamics of the Embryonic Stem Cell Switch

Transcriptional Dynamics of the Embryonic Stem Cell Switch Vijay Chickarmane, Carl Troein, Ulrike A. Nuber, Herbert M. Sauro, Carsten Peterson PLoS Computational Biology Vol. 2, No. 9, e123 DOI: 10.1371/journal.pcbi.0020123

Abstract

Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP), at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG.

Full Paper

Supplementary material

 
sysbio/signalingnetworks.txt · Last modified: 2007/07/17 10:59 by mallain
 

    Home  |   About Us  |   Contact Us  |   Statistics
Recent changes RSS feed Creative Commons License Donate Powered by PHP Valid XHTML 1.0 Valid CSS Driven by DokuWiki